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' I. INTRODUCTION

There are presently only two basic analytical methods applicable to

scattering from random rough interfaces -- the Rayleigh or small wave-height

approximation and the Kirchhoff or physical optics approximation. Both of these

methods are valid only for a limited range of parameters. Composite-roughness

theory, which combines these two approaches in their respective regions of

validity, also has a defect; its predictions are dependent on an arbitrary

parameter.

The Rayleigh approximation arises from assuming that the scattered field can

be written in terms of waves propagating away from the surface, even in the

hollows between adjacent peaks on the surface. The field on the bounding

interface is not explicitly computed. The Kirchhoff approximation, on the other

hand, arises from retaining only the lowest order term in the solution of an

integral equation of the second kind for the surface field. This approximate

surface field is then used to compute the scattered field via the Helmholtz

integral.

In addition to the integral equation of Malte1 and Meecham2, which is

traditionally used when discussing the Kirchhoff approximation for scattering from

pressure release surfaces, there exist other surface field formulations: namely,

Uretsky's3 integral equation of the first kind and a variant of the Maue-Meecham

equation introduced by Dashen. In this article, the solution of these three

different integral equations is obtained in the form of a series by first

expanding the kernel of the integral equation in a small parameter and then

applying the method of successive approximations.
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Section II introduces the problem addressed, scattering from a one-

dimensional periodic pressure release surface and reviews the result obtained when

the Rayleigh hypothesis is invoked. In Section III, the three integral equations

are solved and expressions are obtained for the reflection coefficients.

Uretsky's equation yields a result identical to the Rayleigh series to third

order. The two integral equations of the second kind, however, yield results that

differ from each other and the Rayleigh series at third order. Only one of these

series, that based on Uretsky's integral equation, has the necessary attributes to

represent a meaningful physical solution. The reflection coefficients arising

from the two integral equations of the second kind are not reciprocal and also are

unbounded when the grazing angle associated with the reflected order vanishes.

Uretsky's equation may also be cast into an integral equation of the second kind

I and the convergence of its solution demonstrated by a method due to Urusovskii 5.

However, if the kernel of this integral equation is expanded, this proof is

inapplicable. This is also true for the other two integral equations leading to

the disparate results.

I Section IV summarizes these findings with the conclusion that Uretsky's

integral equation is the preferred starting point for the development of improved

low-frequency scattering formulations.

I
II. THE SMALL WAVE HEIGHT APPROXIMATION

I Figure 1 depicts the problem of interest -- scattering of an incident plane

wave of wavelength A - 2n/k

Pinc(XZ) - exp[ik(a0x - 70z)], (1)

by a one-dimensional periodic pressure release surface. Our nomenclature closely

I
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follows Holford's6 with an incident grazing angle 00 so that a 0 - cosO 0 and

-Y - sino. Far from the surface, the total field may be written

p(x,z) = p. (x,z) + Z R exp[ik(a x + Y z)], (2)Sinc n n n n

where R is the reflection coefficient for the n order andn

n a 0 + (nK/k),

1 a2 )1/2 j

i2 1/2n ; lnl~3n i (an - 1)1/ ," Ianl 3

where the fundamental surface wavelength A - 2r/K. Note that in Eq. (2) when the

limits on the summation are omitted, the limits are understood to be -o, +o. This

same simplification will also be used for infinite integrals.

Rayleigh assumed that Eq. (2) held not only in the far field but also on the

boundary z - (x). Equating p(x, (x)J - 0, then yields

exp[-ikj0 (x) ] = Z R [iKnx + ikn (x)]. (4)
0n n n

To obtain a solution to this equation Rn is expanded in a small parameter

- 0 (kh)

R - R( 0 )+ e R(1 )+ 2 R(2 )+ .... (5)
n n n n

The exponentials in Eq. (4) with arguments - 0 (e) are also expanded, permitting

an iterative solution for the R

R ( 0 ) -  .6 n

n n,O'

U R 1 )- 2 iky0hn ,

n 0k n

3 (2 )- 2k 2 YO Z -m h hn mn-m m

R ( 3 ) _ (ik3Y 0 /2) Z h h h (- 7 2)/3 2 2 4n 0 m,p n-p p-m m -(n 0 i p m p

(6)
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i wit h - A dx3 with h - f - (x) exp(-iKmx). The identity

2 (2 m2
n Z h h h =3 Z h h h , (7)

rp n-p p-m m m,p n-p p-m m

which can be verified by interchanging the indices has been used to cast the third

order reflection coefficient into a reciprocal form.

III. SURFACE INTEGRAL FORMULATIONS

A. The Maue-Meecham Integral Equation

Mauel and Meecham2 derived an integral equation of the second kind for

the normal derivative of the pressure on the boundary

O(x) 20k(x) - f O(x') K1 (x',x)dx', (8)

where (x) = (- + ,(x) axBz B

3(x) = -[70+ aO '(x)] Pinc[X, (x)],

kHl )(kp)
Kl(x',x) - 2 I [ ) (x) -W- x)(x)],

12 2 1/2
and p = ((x'- x) + [ (x') -(x)]2)

The Kirchhoff approximation results if only the first term on the right hand side

of Eq. (8) is retained.

On applying the operator 0f A d exp(-ikm x) to both sides of Eq. (8), one
AOm

obtains the set of equations

m + E V n 20M (9)3m nm,n n i
n

where
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mn - 2--0 A f dr K1 (r,x) exp[ika r + iK(n-m)x], (10)
m,n 2L0UfnA(10)

* A d

Om - 0 A  ;(x) exp(-ika mx),

and r - x'- x.

I To obtain tte desired series solution, the Hankel function appearing in the kernel

of the integral equation is expanded in the series
7

V/2 (1)_1/2 0 rz m(1)

(l+r) H [z(l+r) = m m! (-) H+m (z), (11)

which is absolutely convergent for

SIrl - [ (r+x) - (x)] 2/2 < 1.

gThe integrations indicated in Eq. (10) may then be performed (see the Appendix) to

obtain

M (  - i h [k (-y-'Y) + (m-n) K a/ ]
m,n m-n m n n n

+ (ik 2/2) Z h h h { K[(m-q) a -yqp m-q q-p p-n ~
q,P

3 3 3 3)

+ (p-n) n - 2(q-p)a - I -(k/3) ((n-y 3+ 3- 3

+ .... (12)

It is of interest to note that the leading term in this expansion can be written

in the form

1 a n(am+ a ) I jA dx

o ] a- exp[iK(n-m)x]"(x), (13)
k n(m +  n) 2 (1m + n )

from which it is evident that this is a curvature correction.

If 4n is expanded in powers of E

(0) + ( E)+ 2 0(2) +n " n n n ""
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and the exponentials of argument - O(e) are also expanded, Eq. (9) may be solved

for the Wn

n

n 0 n

( 2)_ k2  h h (2 -ymn" 2)
n 0 n-m m- mn n

(3)_ .k3 'Y Z n h h [-y 0(2_ 2 /3 -217)I k-v 0  m,p
n, 0 1 ~ n-rn rn-p p n rn n 7 mp

p p pn nm mp

* The identities

Z h h h (p) Z h h h ()
I m,p n-r r-p p 2 m,p n-m m-p p

1 Z h h h (n)
3 m n-m m-p p

rn,p

are used in obtaining Eq. (14).

With 4n known, the reflection coefficients are found using

Rm - i 7n 4n , A d exp[iK(n-m)x -ik7 m(X)]. (15)
2y 2- n n 0 A mn(5

The R are expanded as in Eq. (15) and the exponential factor with argument

- (c) is likewise expanded. For 0 !5 j :5 2, the RMj  are identical to the
n

3 Rayleigh reflection coefficients. For j - 3, the result differs

i3

R (3 )  R(3)(Rayleigh) + -- Z. h h . h.
n n pn P 'j n-p p-j j

2 3
x[-Y (a + a n a p-2) --y (an + a n J -2) + (7 - 0 + oOOan)/3. (16)

I

I
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The additional term in Eq. (16) is not reciprocal and also becomes unbounded as -n

vanishes.

B. Dashen's Formulation

Dashen4 introduced the integral equationU bx 2 ds 2 [x~x} ds2
O(x) - -21 ( x) Pinc [XX) (!L) f (x')K 2 (x',x)dy', (17)

H~l ) (kp)

where K2(x',x ) - ik 1 [(x') - (x)],

and (dx) = 1 + [ '(x)] 2

Performing the same operations as in subsection A, the set of equations

m + E V ( 2 )  n = 2m , (18)
m m,n n

n

is obtained. In this case

1 m = dx exp(-iKmx)(!s) 2 exp[-ik0[(x)],

and

V(2) ik i A dxd f A (yx) f dr K2 (r,x) exp[ikanr + iK(n-m)x].

With the use of Eq. (11), V(2 ) may be expanded

m,n

V (2 ) 
- ik(-y -y ) h ikK 2 Z h . h. h (j-p)

m,n m n m-n jp m-j -p p-n

ik3 Z h h3 h (3 -_7m + 37 -3
x(m-j) ( - 6m + -m-j j-p p-n n 3  3

+ .(19)

The first term in Eq. (19) may be rewritten as

( a m+n) 0fA d- '(x) exp[iKx(n-m)],

Om +Yn)A
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and is a slope correction.

The surface field transform 4n can again be expanded in powers of c. For

Dashen's equation, the result differs at third order from Eq. (14). In this case,

73

(3) 3- p Y3 - 3
n 2ikh 'Y h h h ~'n +-D
n 0 ~m,p - Pp 6 3

( 2 2 23(+ o ('Y 0 p m + 7Yn /3 - 0/)+ lnlmlp - 'Yn-Ym/2

+ (Yp/3) (Pa 0  aa n + 0 an-l)] (20)

The corresponding reflecticn coefficient

R( 3 ) _ R(3)(Rayleigh) + in-p0 Z h h hn n 2-yn  mp n-m m-p p
n m,p

x [ 2-yO( 0-n)/3 -41p2/3 - 2 3
Ln 0 07  / p n 7n m 7p

-21p (a 0 - aan + a 0-
1 )/3], (21)

differs from that of subsection A, but, nevertheless, suffers from the same

deficiencies.

C. Uretsky's Integral Equation

Uretsky's 3 integral equation is obtained by evaluating the Helmholtz

integral on the boundary

f O(x') K0(x,x)dx' = -2p inc[X,(x)], (22)

where K0 (x',x) - (k/2) HMl)(kp). This integral equation reduces to the system of

equations

Z V() , -2 (23)
n
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3 where

m = 0  Adx exp(-ika mX) pinc(x,(X)]' (24)

and

mIn - 0 j A f drK 0 (rx) expfika r + iK(n-m)x]. (25)m-n n

0Again, using Eq. (11), may be written as a series
m,n

V (0 ) - 6 /Tm- k2 Z h h (-Y +Y -2-y ) + ... (26)
m,n , m-p p-n m n pp

3 The second term in Eq. (26) can be manipulated to show that it depends on both the

square of the surface slope and the product of the curvature and height.

The surface field transform differs at third ocder from that of subsection A

3)= k3 0n Z h h hm [--y/3 + Im n + m _ -yp m  (27)

m,p

and the reflection coefficients are identical to the Rayleigh reflection

coefficients. In a related study8 , it is shown, for the case of a pressure

release sinusoidal surface, that the reflection coefficients resulting from the

expansion of Uretsky's equation are identical to the Rayleigh result at every

order in The expansion.

With Eq. (24), Eq. (23) can be rewritten

Im + E V n 2ymm (28)inm,n nm
n

where

(0)I m,n - YmVin,n 6 m,n (29)

For the solution of Eq. (28) to converge as the number of equations retained

becomes large, V must be a completely continuous operator in the space of
in,n
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square summable sequences, and the right hand side of this equation must be an

element of this space, or
9

12 -m 2  < C, (30)
m,n

and

- 2
E IV m,ni < 0. (31)
m,n

From Eq. (29), this latter requirement will be satisfied if

E 17 v>O) 12< -. (32)m m,n
m,n

Urusovskii5 has shown that I V(0 ) is bounded. Thus with m-n+p, Eq. (32) becomesm m,n

E I -Y V (0 )  1 2
n L n+p n+p , n < (33)

n, p( N <

With the assumption that (x) is four times differentiable, Eq. (25) may be

integrated by parts, twice with respect to both x and r, whence

M nV( 0 )  (34)
n+p n+pn as IPIInH 2 (3)

where M < c. This is sufficient to satisfy Eq. (33). Two integrations by parts

of Eq. (34) are sufficient to demonstrate that Eq. (30) bolds. Thus,

Kantorovitch's method of reduction9 is applicable to Uretsky's formulation as well

as the two integral equations of the second kind. Note, however, that this proof

is inapplicable to the expansions of V given in Eqs. (12), (19), and (26).m,n

D. Monostatic Backscattering Strength

The expressions given for the reflection coefficients are of sufficient

complexity that it is difficult to ascertain their dependence on various

parameters. If one takes ensemble averages, the resulting expressions are
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simpler. Let us first consider the quantity

Q < R(1)*()+ (2) *(2) (1) R(3)*+ R(3)RI)*
<n + R > + <R n (35)

which is needed to compute the backscattering strength.

For a Gaussian distribution of surface heights

<h h h h > - W(Kp) W(Kr) 6 6p q rs p,-q r,-s

+ W(Kp) W(Kq) 6 6 + W(Kp) W(Kq) 6 6
p,-r q,-s p,-s q,-r

where W(Kp) is the rough surface wave number spectrum normalized such that

< 2 (x) > - Z W(Kp).

I p
The first term on the right hand side of Eq. (35) is the same for all of the

Iformulations

Q Q(l) 4k 226n,j{W(2ka0 ) + k Z W [k(a -a)]
m

x W (2ka0+ Km) [-ymm + Re(m I )], (36)

for monostatic backscatter, where Re(x) denotes the real part of x. For the

Rayleigh and Uretsky formulations, the second term on the right hand side of

Eq. (35) is

n,j(2) 8k4 -n2 j W(2ka0 ) Re[Z W(Kp) (Ip-2- p) ]

For the Maue-Meecham and Dashen formulations, respectively, one obtains

Q (2 ) _ Q(2 ) (Rayleigh) - 16a 2ik 40'n6 W(2k 0)n,j n,j 0  0 nj

x Re[Z W(Kp) (1O-p

la and
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I(2) (2) (Rayleigh) + 2k4 1 6 W(2ka0)n,j " n,j 2406n,j

Re{( W(Kp) [27p(00-Yp ) + 8aO(YpaP-Yp O-70"O)/3]).
P

The scattering strength is then given by

S - k 2 (1)+ Q(2)
K 0 n,j n,j

Figure 2 compares the backscattering strength predicted by the different

formulations. The wave number spectrum assumed for this computation is

I W(Kp) .01 .05/m < Kp < 100/m.
K (Kp)3

IV. CONCLUSIONS
I
The key to solving a general scattering problem is first to obtain a solution

for the relevant field parameter evaluated on the scattering surface. For all but

Svery simple cases, which can be treated numerically, this entails an

approximation which thence limits the region of applicability of the result

I obtained.

This article has considered three different formulations of the boundary

integral equation for plane wave incidence on a periodic pressure release surface.

In the low-frequency limit, the three equations yield different results. Only

Uretsky's integral equation yields physically acceptable reflection coefficients

I and these are identical to those obtained using the Rayleigh or small wave height

approximation.

Whereas the Rayleigh approximation is in good agreement with exact solutions
C0 Q-

for scattering at low frequencies and grazing angles 0 , when the frequency orI p. 4

I



14 2 March 1990
STM Izh

grazing angle is significantly increased, this approximation yields scattering

strength predictions considerably higher than those experimentally observed. It

appears that Uretsky's integral equation is the only viable starting point for

developing a general scattering theory applicable over a greater range of
I

parameters. ,
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Appendix

All of the integrals considered are evaluated using the following

prescription. The Hankel functions are first expressed in the form

H(1)(Z) -1 2 dp exp( iz (k2 - p2)i/2 ik 2  2 1/2
(k2 _ p2)i/2 pk i nk

(A-I)

Terms of the type [((r+x) - (x)] are expressed as

0 l da Z hm (iKmr) exp(iKm(x+ar)], (A-2)

m

and those of the form [((r+x) - (x) -r '(x)] as

0 Of i Z hm(iKmr)2 exp( iKm[x + (l-P)r]) (A-3)
m

By assigning k a small positive imaginary part 6, the order of integrations can be

reversed and the integration over r performed. The integration over p in

Eq. (A-l) may then be performed by closing the contour in the upper half plane, at

which point one can set 6 = 0. The remaining integrations are straight forward.
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